手机浏览器扫描二维码访问
前端部分我采用streamlit来完成,UI设计如图所示。
这边是功能按钮,中间是对话框。
先前有讲到了,我们来检测针对专业领域的大模型的标准就是检测是否有能力回答专业领域的问题,并针对结果进行优化。
这里我向chatbot提出同一个问题。
只采用大语言模型,采用知识库与大语言模型结合,和联网搜索与大语言模型结合。
三种功能下获得的回答是完全不同的,后面两个检索功能均为大语言模型优化了生成回答的准确性,对大语言模型的专业领域知识做了补充和改善。
可以看到普通的大语言模型回答的是最简短的,采用了知识库的回答,将答案细分,扩充,并添加了新的内容,附上参考文献。
最后的联网搜索,将答案分为了几类,更加全面,但是每类回答点到即止。
最后就是向量知识库进行优化。
对于准确率低的查询,分析模型回应错误的原因。
如果是由于知识库中缺少相关信息,可以通过添加更多相关文档和数据来增强向量知识库的覆盖范围。
用户反馈是对输入的问题和产生的回答进行记录,方便针对性进行调整。
反馈可以直接用于指导向量知识库的更新和优化。
不断地测试来完善我的专业领域大模型。
最后一部分是我本次研究的总结。
首先创建了一个能被大语言模型直接调用的专业知识库,在电力LCA这个专业性较高的领域填补了大语言模型的空白。
其次是采用RAG技术,将知识库,联网与大语言模型相结合,增强了大语言模型在特定领域的可信度和实用性。
最后就是本次研究虽然是针对电力LCA领域,但其背后的构架适用于各个领域,构建了一个完整的体系,可以进行修改,全方面的辅助大语言模型,应用广泛。
以下就是我的全部研究内容请各位老师批评指正。
3.3.2数据预处理
Unstructured库是一个强大的工具,专为处理非结构化数据设计,具体流程如图3.7所示,
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
如从文本文档、PDF文件或网页中提取数据。
它支持多种数据提取方法,包括正则表达式匹配、自
然语言处理(NLP)技术等。
数据预处理步骤如下:
步骤一:数据清洗
去除杂质:从文本中去除无关的字符,如特殊符号、空白行等。
格式统一:将所有文本统一为相同的编码格式,通常为UTF-8,以避免编码错误。
前世被当副镇长的老婆离婚后,崔向东愤怒下铸成了大错,悔恨终生!几十年后,他却莫名重回到了这个最重要的时刻!他再次面对要和他离婚的副镇长老婆,这次,他会怎么做?...
性格嚣张的林飞扬走马上任镇委书记当天就得罪了顶头上司,让大领导颜面无存,差点被就地免职,且看这个嚣张到骨子里的家伙如何凭借孙子兵法和三十六计勇闯重重危机,智破层层陷阱,在官场上混得风生水起,扶摇直上…...
他们都是草根出生,凭自己的努力走上仕途,但一个清廉,一个腐败,于是一见面就成了格格不入的对手...
林风因意外负伤从大学退学回村,当欺辱他的地痞从城里带回来一个漂亮女友羞辱他以后,林风竟在村里小河意外得到了古老传承,无相诀。自此以后,且看林风嬉戏花丛,逍遥都市!...
官场是什么?官场是权力的游戏。官场远比江湖更为险恶。千帆竞渡百舸争流!跨过去那就是海阔任潮涌风劲好扬帆!官场的规矩是什么?正确就是官场的最大规矩!重活一世。刘项东洞悉一切。他不仅能正确,还会一直正确下去!重生是风自身为鹏大鹏一日同风起,这辈子,我刘项东要扶摇直上九万里!...
精神发疯文学,没有原型,没有原型,没有原型(讲三遍),请不要在评论区提真人哦。金手指奇大,cp沈天青。日六,防盗八十,上午十一点更新江繁星八岁时候看见律政电视剧里的帅哥美女环游世界谈恋爱...